
Here we will show you step-by-step how to simplify the square root of 735. The square root of 735 can be written as follows:
√ | 735 |
The √ symbol is called the radical sign. To simplify the square root of 735 means to get the simplest radical form of √735.
Step 1: List Factors
List the factors of 735 like so:
1, 3, 5, 7, 15, 21, 35, 49, 105, 147, 245, 735
Step 2: Find Perfect Squares
Identify the perfect squares* from the list of factors above:
1, 49
Step 3: Divide
Divide 735 by the largest perfect square you found in the previous step:
735 / 49 = 15
Step 4: Calculate
Calculate the square root of the largest perfect square:
√49 = 7
Step 5: Get Answer
Put Steps 3 and 4 together to get the square root of 735 in its simplest form:
7 | √ | 15 |
Simplify Square Root Calculator
Please enter another Square Root for us to simplify:
Decimal Form
Square Root of 735 in Decimal form rounded to nearest 5 decimals:
27.11088
Exponent Form
Square Root of 735 written with Exponent instead of Radical:
735½ = 7 x 15½
Simplify Square Root of 736
The answer to Simplify Square Root of 735 is not the only problem we solved. Go here for the next problem on our list.
* List of Perfect Squares
Copyright | Privacy Policy | Disclaimer | Contact